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PREFACE

The mission of the Intelligent Systems Branch of the Training Systems Division of the Air
Force Human Resources Laboratory' (AFHRL/IDI) is to design, develop, and evaluate the
application of artificial intelligence (Al) technologies to computer-assisted training systems.
The current effort was undertaken as part of IDI's research on intelligent tutoring systems
(ITS), ITS development tools, and intelligent computer-assisted training testbeds. The work
was accomplished under work unit 1121-09-71, Machine Learning: Knowledge Integration
Techniques. The research was supported by the National Aeronautics and Space
Administration and the Research Institute of Computing and Information Systems (Research
Activity #ET.24).

I would like to thank Dr. Kurt Steuck of the Air Force Human Resources Laboratory for
sponsoring this work under subcontract #063, RICIS research activity #ET.24 (NASA
Cooperative Agreement NCC9-16).

1 AFHRL has been redesignated Human Raources Directorale, Armstrng Laboratory.
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AN ENDORSEMENT-BASED APPROACH TO STUDENT MODELING
FOR PLANNER-CONTROLLED INTELLIGENT TUTORING SYSTEMS

1. INTRODUCTION - LIMITATIONS OF NUMERIC STUDENT MODELS

This paper describes a symbolic (i.e., nonnumeric) means of coping with uncertainty in
student modeling. Rather than represent the uncertainty of the tutor's beliefs with numeric
degrees of confidence, the student model explicitly records arguments (called endorsements in
[Cohen 85]) for and against each belief. No numeric combining functions or interpretation of
numbers is required. Instead, the different kinds of arguments are compared based on the
reliability of their evidence to decide if belief or disbelief in a proposition is justified.

Previous research on the Blackboard Instructional Planner [Murray 90], a planner-controlled
tutor for teaching troubleshooting for a complex hydraulic-electronic-mechanical device, illustrated
some of the shortcomings of numeric student models. That research motivates the research
presented here. Before reviewing the earlier research, we briefly consider the role and demands
placed on the student model in both planning and non-planning (i.e., opportunistic) tutors.

In opportunistic tutors, the student model may be used to decide what issues to discuss
(e.g., WEST [Burton and Brown 82]) or what topics to explore (e.g., MENO-TUTOR [Woolf
84]). Other uses are problem selection (e.g., BIP [Barr 76]) or hint generation (e.g., WUSOR-I
[Carr 77]). Frequently, diagnostic student modeling is used to model a student's problem
solving and its correctness (e.g., PROUST [Johnson 86]).

The student model for a planner-controlled tutor must not only address these issues but
others. A sophisticated student model is needed to track plans and allow customized plan
generation based on an initial assessment of the student. It must interpret different kinds of
assessments (student data) such as the student's background, any student self-assessment,
test questions, any instructor assessment, student-initiated questions, and student problem-solving
actions. Typically, the student model for opportunistic intelligent tutoring systems will handle
a much more limited range of assessment data and have fewer responsibilities. For example,
those tutors that act as problem-solving monitors (the most common paradigm) predominantly
focus on assessing problem-solving actions for hint generation and future problem selection
(e.g., IMTS [Towne et al 89]).

The student model of the Blackboard Instructional Planner illustrates some of the shortcomings
of numeric student models and how they can limit tutor capabilities. That student model is
an overlay [Carr and Goldstein 77] of a semantic net representation of domain concepts.
Associated with each concept is a number representing the tutor's confidence that the student
has acquired the concept. The numbers are initialized from a pre-instruction questionnaire
according to inferred cognitive stereotypes [Rich 79] and later adjusted according to the student's
test and problem-solving performance.

With this numeric approach, the tutor tended to either replan at the wrong times or not
replan when it should. The problem was that planning decisions could only rely on these
numbers, which were compared to threshold values. Replanning can easily go awry because
of the difficulty of determining precisely how to adjust the numeric weights to integrate the
different kinds of assessment data, and because of the arbitrary nature of the three planning
thresholds that were used. One threshold measured when a concept was learned, another
when it was forgotten, and a third when an instructional activity was making insufficient progress.
When the thresholds and updates were adjusted conservatively, the planner tended not to
replan when it should. When they were adjusted less conservatively, the planner tended to
replan when it should not.



These problems led to the development of an endorsement-based student model (ESM).
The remainder of this report describes the endorsement-based approach and its evolution,
compares it to alternatives, and argues that It is particularly appropriate for planner-controlled
tutors.

2. THE ENDORSEMENT-BASED APPROACH TO STUDENT MODELING

The key aspects of the ESM are:

1. Explicit representation of tutor beliefs and their endorsements - Propositions represent
the tutor's beliefs about the student's skills along with arguments for and against those beliefs.

2 Inheritance of endorsements - An ISA hierarchy represents the subject matter. The
ESM uses the hierarchy to represent the degree to which a student has generalized a skill.
Endorsements for a generic skill (a skill that can be applied to all members of a class) are
inherited down the hierarchy towards subclasses (or instances) representing more specific skills.
Endorsements against a generic skill are propagated up towards superclasses representing
more general skills.

3. Wide variety of assessments - Several different kinds of information, varying both in
specificity, source, and reliability are incorporated.

4. Lexicographic comparison of arguments - Endorsements are sorted into equivalence
classes according to reliability. This ordering allows lexicographic comparison of pro and con
arguments. The result of the comparison is a label for each belief - believed-true, believed-false,
unknown (no data), or uncertain - and an indication of the decisive argument, it any, that
indicates how well justified a belief is.

5. Consistency between endorsements and labels - The student model explicitly represents
the justification for each endorsement and tutor belief. All justifications are ultimately grounded
iii assessments (student data). If endorsements become invalid or labels change then consistency
is maintained between derived endorsements and any labels that depend on them.

These features are best illustrated by examples.

2.1 Examples of Endorsement-Based Student Modeling

This section presents a scenario demonstrating the endorsement-based approach. Assume
the student is learning to troubleshoot a device and must first learn how the device and its
individual parts operate. Figure 1 shows a class hierarchy of parts of the device. Classes
of parts are connected to subclasses by solid arrows. These in turn are connected to part
instances by dotted arrows. The tutor's goal is to ensure that the student understands the
operation of all of the device's hydraulic valves. This goal (a generic skill) is represented by
the proposition SK (op, hydraulic valves).

SK stands for "student knows" (a notation adopted from [Peachey and McCalla 86]). The
general form is SK (skill, node) where node is either a class or instance. SK (op, UVK4) is
believed true when the tutor believes the student understands the operation of the UVK4 valve.
SK (op, latchable valves) is believed true when the tutor believes the student understands the
operation of all the latchable valves - UVK4, UVK9, and UVK10. So, if SK (op, UVK4) was
believed false then SK (op, latchable valves) would also have to be believed false.

2
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Figure 1. Class hierarchy of device parts.

The scenario below illustrates how an endorsement-based student modeling system can
cope with several different kinds of assessments, can infer new beliefs based on inheritance
(the links in Figure 1), and can retract beliefs that are no longer justified. It also shows how
pro and con arguments are compared.

Table 1 summarizes the scenario. The top row lists the labels of the five left-most nodes
in Figure 1. These nodes are the only ones whose labels change in this scenario. In the
top row "Latch" and "Hydra" stand for "Latchable Valves" and "Hydraulic Valves' respectively.
Below each node are two columns marked + and -. For each node x all pro arguments for
SK (op, x) appear in the + column and all con arguments appear in the - column. The letters
are abbreviations for different kind of arguments. For example, D stands for a default belief.
The other kinds of arguments and their abbreviations are shown in Table 2; they will be
explained as the scenario unfolds. Boldface arguments are the deciding arguments in determining
the label of propositions, i.e., they cast the deciding vote for or against a proposition. If an
argument is in boldface underneath a - column with label node then SK (op, node) is
believed-false. Similarly, a boldface argument in the + column indicates a label of believed-true.

Initially the tutor assumes that the student does not know how the valves operate. These
default assumptions are indicated by the three Ds in line 1. Since there are no argumefts
to oppose these each node2 is labeled believed-false. The remaining two nodes receive the
labels unknown as no arguments are recorded for them yet.

2Actualy for each nod. th, predicate SK (op, node) is assigned Iho label. Nodes are referred to instead of their
ofesponding SK predicates for sucidnctes.
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Table 1. A Summary of PRO and CON Arguments for the Scenario

Event UVK4 UVK9 UVK1O Latch Hydra

1. Defaults D D D

Z Self-assess D D D ST

3. Inherit beliefs lB D IS D IB D ST

4. T/F question lB D lB D lB D ST
T/F

5. M-C question lB D lB D lB D ST
T/F M-C

6. S/A question lB D lB D lB D ST
TIF M-C S/A

7. Trend - samples lB D lB D IB D ST TR
TIF M-C S/A

8. Retract inherited 4B D 48 D W8 D ST TR
T/F M-C S/A

9. Propagate disbelief D M-C D D ST TR PR
TIF S/A

10. Tutor presentation TU D M-C D D ST TR PR
TIF S/A

11. Retract arguments TU 0 M-C D D ST T-R R
/F S/A

12. Inherit as before TU M-C D lB D ST
IB lB S/A

13. Tutor presentation TU M-C D lB D ST
lB lB S/A

TU

14. Retract arguments TU M-C 9; IB D ST
lB IB S/A

TU

15. Tutor presentation TU M-C lB D ST
lB lB TU S/A

TU

16. Retract arguments TU M-C lB 0 ST
lB IB TU WA

TU

17. Trend - labels TU M-C IB ST
lB lB TU LT

TU

18. Trend - labels TU M-C lB ST LT
lB lB TU LT

TU

4



Line 2 shows the student's self-assessment (ST) of his knowledge of the operation of
latchable valves. This is recorded as a pro argument under Latch as the student claims to
understand how this kind of valve operates. The node Latch now receives the label believed-true.

Une 3 represents three new endorsements inferred by inheritance. As shown in Figure 1,
if the student understands how latchable valves operate then he should understand how UVK4,
UVK9, and UVK10 operate. Each new inherited belief (IB) overrides the previous default (D)
beliefs, changing the labels from believed-false to believed-true.

As shown in Table 2, each endorsement is classified into an endorsement reliability class
according to the kind of endorsement and whether it is positive or negative. Table 2 lists the
different kinds of endorsements used in the scenario, in order from most credible to least
credible. Consistent data trends (TR) are considered the most reliable, followed by student
claims of ignorance (ST-) and then specific counterexamples to generic skills (PR-). Tutor
presentations are considered the next most reliable evidence (TU+), followed by arguments to
label parent nodes the same as the majority of their children (Li). A student's claim to know
some skill (ST+) is considered less reliable, but answers to individual questions are even more
suspect. However, a given short answer question (S/A) is considered more reliable than a
multiple choice question (M-C), which in turn is considered more reliable than a true false
question (T/F). The weakest beliefs are those based on inheritance (IB+) or defaults (D).

Continuing the scenario, the tutor asks one question on each latchable valve in lines 4,
5, and 6. Only the second question is answered correctly. As arguments based on test data
are more strongly believed than inherited beliefs or default beliefs the labels for UVK4 and
UVK10 are now believed-false once more.

A new kind of argument, called a data trend, is inferred by the student model from these
three questions. A data trend is only inferred based on test questions or other kinds of
student performance, and only when a clear majority of the data is pro or con. A data trend
is considered the most reliable kind of endorsement since it is based on multiple snap-shots
of student performance. Individual questions (T/F, M-C, or S/A) are more liable to noise -
lucky guesses, confusion, typos, etc.

A negative data trend is added as a con argument to the node Latch in line 7 as two
out of three questions on latchable valves were missed. It overrides the student's sef-assessment
causing the label of Latch to become believed-false. The previous inherited beliefs, which
depended on Latch being labeled believed-true, are now retracted as shown in line 8 by a
strike through each retracted belief (18).

If the student does not understand how latchable valves operate then he cannot understand
how hydraulic valves operate. That is why a PR (for propagated disbelief) argument is added
to the minus (con) column under Hydra in line 9. That causes Hydra to become labeled
believed-false.

Now the planner decides to review the operation of the valves. Lines 10, 13, and 15
indicate these tutor presentations. After a tutor presentation, prior test results or default beliefs
indicating lack of the knowledge covered are no longer necessarily valid and are retracted.
Such retractions occur in lines 11, 14, and 16. When the TR argument is retracted in line
11, the label for Latch is recomputed. t becomes believed-true again, which in turn causes
the inherited endorsements (IB) for UVK4, UVK9, and UVK10 to be reintroduced in line 12.

5



Table 2. Endorsement Reliability Classes, In Order of Believed Reliability

Class Symbol Description

Data trends TR Consistent trends in student performance

Negative student self-
assessment ST_ The student says he does not know something

Propagated disbelief PR- Argue that skill x cannot be known for class y as
it is not known for class (or instance) z and y
includes z

Tutor presentation TU+ Argue that skill is known as tutor has covered it

Label trends LT Assign class X the same label as most of its
children

Positive student self- ST+ The student says he knows something

assessment

Short-answer S/A The student answers a single short-answer question

Multiple-choice M-C The student answers a single multiple-choice
question

True-false T/F The student answers a single true or false question

Inherited belief IB+ Argue that class (or instance) y is known as its
superior class x is known

Default belief D Default belief

After the final presentation, a different kind of trend is inferred called a label trend. The
earlier data trend depended on test data. This second kind of trend reflects a trend among
the labels (not data) of the children of a node. The labels must be justified by arguments
that are at least as strong as tutor presentations, which is why no label trend was inferred
from the defaults in line 1. Lines 17 and 18 show label trends added to Latch and Hydra,
assuming that Directional Valves (see Figure 1) was already labeled believed-true because of
a sufficiently strong argument.

The label trend endorsement (Li) for Hydra causes SK (op, hydraulic valves) to become
labeled believed-true. This completes the scenario as the tutor's goal is now achieved.

Note that the strength of a belief can be measured by the reliability of its deciding argument.
For example, belief that the student knows how UVK9 operates increases from line 3 (IB) to
line 5 (M-C) to line 13 (TU) as shown by the ordering in Table 2. If the planner had wanted
stronger justification before believing its goal was achieved, it could have required a stronger
deciding argument for SK (op, hydraulic valves), such as an argument of the data trend class.
In that case, further questioning of the student after the tutor presentation would be required
to gather such data.

6



The key points illustrated in this scenario are:

1. Many different kinds of assessments are handled in the ESM - Three different kinds
of test questions were used along with default beliefs, inherited beliefs, student self-assessment,
and changes inferred from tutor presentations.

2. No numeric degrees of belief are required for evidence - The ordering of endorsements
according to their reliability is sufficient.

3. No numeric combining functions are required - All arguments are retained unless later
retracted. Unlike numeric approaches, each argument's contribution to a label can always be
determined.

4. Inferred beliefs reflect the inheritance hierarchy of the subject matter - The inheritance
in Figure 1 is enforced by the ESM. The ESM uses the class hierarchy to represent the
extent to which the student has generalized a skill.

The lexicographic comparison routine was only demonstrated in the scenario with simple
cases. In general, an arbitrary number of arguments can be compared. They are first sorted
into equivalence classes of reliability, such as those shown in Table 2.3 Then, starting with
the most reliable class the pro and con arguments in that class are paired. If one or more
pro arguments are left over then the label for an SK proposition in question will be believed-true.
If one or more con arguments are left over it will be believed-false. If all arguments can
be paired, then the next most reliable class is considered to break the tie. If a tie is never
broken, then the label is uncertain. If there are no arguments at all it is unknown.

2.2 Implementation

The ESM is implemented in a layered fashion over a justification-based truth4 maintentance
system (JTMS). It also uses a simple forward-chaining rule-based inference engine and
assertional database called the Justification-based Trivial Rule Engine (JTRE) that makes use
of the JTMS. These two systems were obtained from the documentation and code of [De
KIeer et al 89] and were developed prior to the research described here.

The role of the JTMS is to ensure consistency between inherited and propagated beliefs,
and those they depend on, and to notify the lexicographic comparison routines that ESM labels
need to be recomputed when such beliefs are retracted or previous endorsements are un-OUTed
(i.e., reintroduced). The assertional database JTRE stores propositions representing SK
predicates, their ESM labels, and the pro and con arguments that justify the labels.
Forward-chaining JTRE rules carry out the propagation and inheritance of endorsements and
invoke the lexicographic comparison routines when new arguments should be considered.

3 0f course, other kinds of assesaments, evidence reliability classes, class orderings, and assessment to dam mappings
can be used in an ESM. Table 2 IllusH'ates just one set of choices.

4.ustikwilon-based truth maintenance systems are distinguished from other kinds of TMS by having nodes that re either
IN (believed) or OUT (not believed). The only kind of constraints th can be expressed are logical implications. In oontrast, an
ATMS (a umption-based TMS) has labels indicating when nodes will be believed (i.e., what sets of assumptions must be tue)
and an LTMS (iog-based TMIS) allow* even more general logical constraints (e.g., either x is true or y but not both) [De Keer
St al Sol.
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3. RELATED WORK IN STUDENT MODELING
AND UNCERTAIN REASONING

Now we consider related work in student modeling and uncertain reasoning. Numeric and
symbolic approaches to uncertainty are discussed for both ITS and non-ITS applications.

3.1 Numeric Approaches

Possible numeric approaches to representing uncertainty include certainty factors [Shortliffe
and Buchanan 75], Dempster-Shafer theory [Shafer 76], fuzzy logic [Zadeh 78], or use of
Bayes' Rule. These approaches are discussed in [Bonissone 87], along with the following
problems:

1. Inability to distinguish uncertainty from lack of evidence - If a single number is used
to represent degrees of belief then typically 0 will represent both a complete lack of data and
uncertainty due to a balance of conflicting data.

2. Normalizing PRO and CON evidence - If on the other hand two numbers are used so
the distinction above can be made, then the amount of evidence for and against a belief may
be normalized. This results in disproportionate weighting of a single piece of evidence that
contradicts several other pieces of evidence.

3. Difficulty of assigning numbers - All of these approaches require numbers to be assigned
to indicate the reliability of each piece of evidence.

4. Difficulty of interpreting numbers - With the exception oT approaches based on Bayes'
Rule, it can be hard to provide consistent and meaningful semantics to the numbers assigned
to derived beliefs.

5. Obscuring the source of derived beliefs - No records are maintained showing how
numeric degrees of belief have been accumulated from different sources of evidence.

6. Arbitrary combining functions - There may be several consistent ways of combining
conflicting data reflecting conservative, optimistic, or moderate viewpoints.

7. Stringent assumptions - Bayes' Rule can be simplified given strong requirements regarding
the mutual independence of each piece of evidence and the exhaustivity and disjointness of
the hypotheses. Unfortunately, these requirements, or the need for a large number of conditional
probabilities (if the simplifying requirements are lifted), often render the approach impractical.

Formal approaches to handling uncertainty are infrequently used in intelligent tutoring
systems, with some exceptions. Certainty factors have been used in GUIDON [Clancey 87],
but the initial assignment and subsequent updating within tutorial rules is somewhat arbitrary.
A different approach, based on fuzzy logic, is being applied to the TAPS intelligent tutoring
system Derry 89] to handle imprecision in measuring the correctness of student inputs.5

5 1n contrast, there i no uncertainty In the assessments the ESM receives. Instead te Is uncertainty in decidng which

tutor beliefs we justified when there re conflicting assessments.
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Frequency of use measures or parameter adjustment approaches, neither based on probability
theory, are the most commonly used numeric approaches to uncertainty in ITS. WEST [Burton
and Brown 79] and WUMPUS [Stansfield 76] rely on the frequency of use approach. They
measure how often a skill was used compared to the numbers of times it could have been
used. Examples of the parameter-adjustment approach include the Blackboard Instructional
Planner (discussed earlier), Kimball's integration tutor [Kimball 82], MENO-TUTOR [Wooff 84],
and the user modeling system GRUNDY [Rich 79].

3.2 Nonnumeric Approaches

Typical nrnnumeric symbolic student models used to represent student problem-solving
strategies or .nowledge include:

1. Procedural networks - Such as BUGGY's [Burton 82] procedural network to represent
subtraction skills.

2. Rules and mal-rules Such as the rules of LMS [Sleeman 83] representing correct
and incorrect linear algebra simplifications.

3. Plan and bug libraries - Such as the loop plans and bug recognizers of PROUST
[Johnson 86] used to understand PASCAL programs.

4. Rule application heuristics - Such as ACM's [Langley et al 84] representation of
production rules for subtraction. The heuristics the student uses in choosing which rule to
apply next are induced from student solutions.

These student models go beyond overlays by representing incorrect beliefs a student may
have. However, except for ACM, they typically do not address issues of uncertainty other
than by applying averaging or other statistical techniques to reduce the effects of noise in
data [Wenger 87]. The kind of knowledge they focus on is primarily the representation of
subskills required to perform an algorithmic, procedural, or problem-solving task.

As mentioned earlier, the ESM is built over a truth maintenance system (TMS) to maintain
consistency between endorsements and labels. In general, TMSs and nonmonotonic logics
can be used to represent tutor assumptions about the student, and detect contradictions that
arise when tutor expectations do not match student performance (as in [Fum, Giangrandi, and
Tasso 90]). The faulty assumptions can then be retracted and the consistency of the student
model restored. [Huang 90] adopts this kind of approach to enforce default cognitive stereotypes
and switch stereotypes when expectations are contradicted.

The difficulty with TMSs (without extensions) is the restricted labels of TMS nodes. As
there will frequently be conflicting justifications for and against any particular belief about the
student, the TMS will have to resolve or tolerate many contradictions. Resolving the contradictions
may require too much student interrogation at an inappropriate time. Alternatively, the beliefs
can just be considered unknown, but that is not much use to the planner.

Cohen first presented endorsement theory in a portfolio recommendation program called
FOUO [Cohen 85. That program weighed pro and con arguments for various investments
and intermediate conclusions, such as whether a client would accept high risk investments, in
making its recommendations.

CYC [Guha and Lenat 90] uses a similar approach called argumentation. In this approach
alternative defaults are compared and specific preference relationships between defaults (e.g.,
assumption A is preferred to assumption B) are used to decide which is the most compelling.

9



The endorsement-based approach is similar except it uses a less flexible means of weighing
arguments.

4. PROJECT HISTORY

We briefly review this project's history here; a more detailed discussion appears in the
appendix. As noted in the introduction, this project evolved from shortcomings of the Blackboard
Instructional Planner arising from the numeric student model it used. The original proposal
submitted to RICIS and AFHRL proposed investigating the application of TMSs to improve the
student model. Once the project began it became apparent that a TMS alone was insufficient
and further extensions to support weighing conflicting evidence were required. This led to the
endorsement-based approach discussed in the design document submitted to RICIS and AFHRL

Once implementation began, five prototype ESMs were implemented. Their major differences
are shown in Table 3. The first prototype used a heuristic measure of the weight of pro and
con arguments. It did not use the JTMS or JTRE The second prototype switched to a
lexicographic comparison to weigh evidence. it also incorporated the JTMS and JTRE, but
only for use in explaining label assignments and to provide an assertional database. It did
not use the TMS to track dependencies. The third prototype distinguished between performance
samples (individual test questions) and data trends drawn from performance samples. It also
placed evidence superseded by tutor presentations in a special shadowed class to discount
its reliability. The next ESM clarified the semantics of the knowledge base, which had been
unclear in the previous prototypes. t changed the level at which teaching and assessing was
done from concepts to attributes of concepts. It also defined generic skills. The fifth and
final ESM used the TMS to maintain dependencies between endorsements and other endorsements
that were propagated or inherited, and any labels depending on those endorsements. In this
final ESM there is no special class of shadowed data. Instead, once data is superseded by
tutor presentations it is withdrawn (retracted). The TMS ensures that dependent inferences
are also withdrawn. Special JTRE rules recompute labels when endorsements change in this
process. For more details of the five ESM prototypes see the appendix.

Table 3. ESM Prototypes Developed During Project

ESM # TMS Clear Data Comparison Retraction
semantics trends method

1 NO NO NO Heuristic NO

2 YES NO NO Lexicographic NO

3 YES NO YES Lexicographic Shadowed

4 YES YES YES Lexicographic Shadowed

5 YES YES YES Lexicographic YES - TMS
retraction

5. CONCLUSION

This report has described problems with numeric approaches to representing uncertainty in
student models. These problems have motivated the development of an endorsement-based
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approach. An endorsement-based student model (ESM) is particularly suitable for planner-
controlled tutors due to the greater demands they place on the student model. These tutors
rely on the student model to generate, track, and revise instructional plans. They must query
the student model and interpret the results to decide if a current activity has achieved its
objective, if a previous objective needs to be reachieved, or if a pending objective has already
been achieved. The endorsement-based approach supports these kinds of queries by allowing
context-sensitive planning decisions to be made that rely on an examination of tutor beliefs
and the evidence that justifies them.

The key research contribution of this work is the symbolic approach to uncertainty of the
ESM. In this approach the tutor's beliefs about the student's knowledge are represented
explicitly. Arguments for and against these beliefs are recorded, and justified in terms of
underlying assessments. The ESM weighs these arguments by sorting arguments according
to evidence reliability and then performing a lexicographic comparison.
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APPENDIX
A MORE DETAILED HISTORY OF THE PROJECT

This appendix describes the project's history in more detail, focusing on how the ideas
presented in this report have evolved. We review changes from the original research proposal,
to the design document, and then through the four prototypes leading to the final implementation.
The ideas have evolved from applying TMS to student modeling, to applying endorsements,
and then to clarifying the representation of the student model, the meaning of the endorsements,
and the underlying implementation.

Research Proposal

The original research proposal (titled "A Research Proposal: Applying Machine Learning
Techniques to Student Modeling and Diagnosis") discussed possible broad applications of truth
maintenance systems or algorithmic debugging methods [Shapiro 83] to different components
of the Blackboard Instructional Planner. The most specific approach discussed was to represent
part-state change rules with JTRE rules that made explicit assumptions that parts were operating
correctly. If a later observation contradicted a result predicted by the rules, then the set of
assumptions underlying the contradiction would indicate the possibly faulty parts. The approach
would be extended to a student modeling application by adding two different kinds of assumptions:
first, that the student knew a rule, and second, that he applied it. Then if the tutor made a
prediction that differed from the student's, the set of underlying assumptions would indicate
the rules the student might not know or might not have applied.

Design Document

The design document (titled "Complex Student Modeling for Planner-controlled Tutors")
proposed replacing the TMS approach with the use of endorsements. The TMS approach was
abandoned because of the reasons discussed earlier: first, plausible not purely logical reasoning
is required; and second, there must be some way of distinguishing different kinds of uncertainty
in a more refined way than IN or OUT; or TRUE, FALSE, or UNKNOWN labels. Furthermore,
the focus on only identifying the student's knowledge and application of rules that predict
device operation appeared too narrow.

The design document proposed compiling a subject matter representation into a student
model with multiple links to represent possible propagation paths of endorsements. Part of
the complexity would arise from the variety of different kinds of things that could be learned
(facts, rules, principles, and procedures). Additional complexity was introduced by allowing
several different kinds of links in the subject matter representation such as ISA, PART-OF,
INSTANCE, REFINES, CAUSES, and PREREQUISITE. The student model also attempted to
represent to what degree a student had learned a concept. Three stages were proposed,
based on [Brecht 89] (in turn based on [Bloom 561), to indicate whether a concept was known
factually, analytically, or synthetically. A means of interpreting assessment data was proposed
whereby endorsements would be propagated along links according to the student's stage of
learning and whether the endorsements were pro or con. A set of rules called conflict resolution
rules was proposed to weigh conflicting pro and con evidence. A heuristic measure of utility
to choose new assessments was also proposed.
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Prototypes

Not surprisingly, what was implemented was less complex and did not address all of the
issues regarding the different kinds of things that can be learned and their different stages of
learning. The compilation of representations and the different levels of knowing a concept
were not implemented. It was first necessary to clarify the semantics of the knowledge base,
the propagation and weighing of endorsements, and the underlying implementation. The
clarification occurred through the implementation of five endorsement-based student model
prototypes that will be referred to as ESM 1 through ESM 5. ESM 5 is the final implementation
discussed in this paper. The differences between these implementations are summarized in
Table 3 and discussed in more detail below.

ESM 1: Using Heuristics to Weigh Evidence

The first prototype did not use any truth maintenance system. Rather than explicitly
represent propositions, a semantic network of concept nodes was created. Each concept node
was a record that not only indicated the other concept nodes that it was linked to, but also
the pro and con arguments for believing the student had acquired the concept. Each argument
was itself a different kind of record with slots indicating the kind of assessment the argument
was based on, when the assessment occurred, what node was originally assessed, and how
many links separated the two nodes (source and destination) in the conceptual network. A
heuristic evaluation function was used to compute the strength of the pro and con arguments
for comparison:

priority (argi])
Weight = Sum

I delay * distance * direction

Priority is a number indicating the strength of the underlying evidence. Delay is proportional
to how long ago the argument's assessment occurred and is at least 1. Distance is proportional
to how far away in the conceptual network the node originally assessed was and is also at
least 1. Direction is either 1 or 2 to measure the plausibility of the direction of propagation
within the network. It is 1 for pro evidence propagated downward, or for con evidence
propagated upwards, as this is consistent with the semantics of inheritance. It is 2 for pro
evidence propagated upward as the evidence is weaker that the student knows a parent
concept given only that he knows a subordinate concept. It is also 2 for con evidence
propagated downwards as the fact that the student does not know some parent concept does
not necessarily imply that he does not know any of the parent's children concepts.

The strength of the pro and con arguments was compared to assign node labels. This
approach was not very satisfactory as it still relied on numbers snd there was no more refined
explanation for label assignments other than the results of compaing two numbers.

Other disadvantages were the coarse-grained and ill-defined knowledge representation and
the unclear semantics of the propagation of endorsements. These deficiencies led to the next
ESM.

ESM 2: Using the JTMS to Infer and Explain Labels

The next prototype added the JTMS to provide improved explanations for label assignments.
Propositions were used to represent the conceptual network and its relationships. A lexicographic
comparison of pro and con arguments was used for the first time. Each proposition also had
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a second label (either low, medium, or high) indicating the tutor's confidence in its belief
based on the amount of pro and con arguments and the degree of conflict between the two
sets of arguments. JTRE inference rules were now used for propagating endorsements. To
simplify matters PRO arguments could only propagate downwards and CON arguments could
only propagate upwards.

One problem remaining was how to classify test data. Although test data is more reliable
than other kinds of data when clear trends emerge, individual test questions are not so reliable
due to noise. Thus it was difficult to determine exactly where endorsements based on test
questions should be classified. For example, should the student's performance on a particular
true/false question be given more or less weight than a student's self-assessment for the same
skill? The next ESM addressed this problem.

ESM 3: Distinguishing Between Weak and Strong Evidence

ESM 3 created two separate classes of endorsements for data. One was based on data
trends obtained from performance samples. The second was based on the performance samples
themselves. It included multiple-choice, true-false, or short-answer questions. The advantage
of this distinction is that the first class is less susceptible to noise, and thus more reliable,
than the second class.

In ESM 3 classes of endcrsements are first subdivided into two major classes, one for
weak evidence and one for strong evidence. The strong evidence class includes both data
trends and performance samples, along with any other arguments directly based on assessment
data without propagation. The weak evidence class includes everything else - endorsements
based on propagation and shadowed endorsements (discussed next).

Shadowed endorsements are endorsements that are considered dated and only marginally
relevant now. An endorsement becomes shadowed if it is a con argument and a subsequent
tutor presentation covers the same material. The rationale behind shadowing is that the tutor's
presentation has substantially increased the likelihood that the student has learned the material
so previous assessments to the contrary are no longer relevant. But, student learning is not
guaranteed by tutor presentations so prior endorsements are not discounted completely. They
remain relevant, but are demoted to the class of weak evidence even if they were previously
strong evidence.

ESM 4: Clarifying the Semantics of the Knowledge Base

The next prototype clarified the semantics of the knowledge base. Previously the finest-grained
item a student could learn was a concept, such as UVK4. That grain size is unsatisfactory
as there are many aspects of a concept that can be learned. For example, the student can
learn the operation of UVK4, the common faults of UVK4, or the role which UVK4 plays in
the operation of the device. Thus, it does not really make sense to say that the student
knows the concept UVK4 or does not know that concept. Instead, we would like to be able
to say, for example, that the student has learned how UVK4 operates, but not yet learned
what role UVK4 plays or what its common faults are.

A second problem with the previous semantics of the knowledge base was in determining
what it means for the student to know a particular skill for a higher-level concept, such as
knowing the generic skill operation for the class hydraulic valves. On the one hand, it could
mean that the student knows how hydraulic valves operate in general, but not that he can
necessarily apply this knowledge to any particular valve (e.g., UVK10). Or it could mean that
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the student can apply this knowledge to each hydraulic valve in addition to understanding the
common principles of hydraulic valve operation.

To address these ambiguities, the grain size of the knowledge base was changed and its
semantics clarified. Now each object in a hierarchy could have one or more attributes and
these attributes were target skills to be learned associated with domain objects. The class
hierarchy of domain objects could then be used to represent to what extent the student had
generalized different skills. So SK (attribute, class) was defined to mean the generic skill
in which the student knows SK (attribute, instance) for each instance of class (the second of
the two meanings given above).

ESM 4 also dropped the second label used to measure the confidence of the tutor's belief
as low, medium, or high. Instead, believed-true and believed-false label assignments were
amended to include the determining arguments used to decide lexicographic comparisons. The
strength of a belief could then be measured by the endorsement reliability class of the
determining argument as discussed at the end of Section 2.1.

ESM 5: Implementing Retraction of Endorsements and Labels

One failing of the last ESM was that when arguments were shadowed any propagated or
inherited arguments based on them were not. ESM 5 uses the TMS to maintain consistency
rather than adding special rules to ensure that all derived arguments are also shadowed. The
advantage of this approach is that all derived arguments depending on superseded assessments
are automatically retracted. Special JTRE rules detect when a label needs to be recomputed
because one of its endorsements has been retracted.

So in this ESM version there is no shadowing, instead once a tutor presentation teaches
attribute a of class c, then all prior assessments showing that the student did not know a of
c are retracted along with any derived conclusions and labels. Labels are recomputed as
necessary.

This version of the ESM is the one presented in this paper.

Conference paper

A conference paper describing the final ESM was submitted to IJCAI-91 under the Intelligent
CAI subarea of the Principles of Al Applications topic. This technical report is based upon
the conference paper. The only difference is that the paper did not include either the project
history contained in Section 4 or this more detailed appendix.
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